

Impacts to Streamflow in the Republican River Basin

Tri-Bain NRD Meeting February 3, 2015

Jesse Bradley, P.G.

Natural Resources Program Director Nebraska Department of Natural Resources

Overview

- Past impacts to Republican River surface water supply – trends and correlations
- More recent water supply impacts
- Benefits of the current IMPs
- Example of conjunctive management successes
 Platte River

Republican River Basin

Data developed and summarized by the RRCA modeling committee

TRENDS IN STREAMFLOW AND BASEFLOW

Estimated Baseflow - North Fork of Republican River at the Colo-Neb Stateline (6823000)

Estimated Baseflow - Rock Creek at Parks, Ne. (6824000)

Estimated Baseflow - Frenchman Creek near Imperial, Ne (6831500)

Water Year

(values in AF)	Avg. 1950-1964	Avg. 1986-2000	Difference
-Total	53,390	18,552	-34,838
-Baseflow	47,952	17,278	-30,674

Estimated Baseflow - Medicine Creek above Harry Strunk Lake, Ne (6841000)

Estimated Baseflow - Arikaree River at Haigler, Ne. (6821500)

Observations Based on Trends

 Streamflows have generally declined in the Basin, particularly in the western and central portions

 There are noticeable declines in both baseflow and runoff

Comparison between inflows to Harlan County Lake and other changes in the Republican River Basin

CORRELATIONS

Inflows vs. Irrigated Acres

Inflows vs. Reservoirs

Inflows vs. Dryland Yields

Observations Based on Correlations

- Inflows into Harlan County Lake are inversely correlated with the development of groundwater irrigation, with the development of conservation practices such as farm ponds, and also with the increase in dryland crop yields in the Basin.
- The most significant declines in runoff appear to have occurred prior to 1970, during the time that the development of conservation practices increased the most.
- Baseflow declines have occurred more steadily over time in a manner more similar to the increase in groundwater irrigation and to the increase in dryland yields.

Causes of Reduced Streamflow Supply

Causes	Quantifying these impacts
Groundwater pumping by the three states	Estimates of streamflow depletions due to groundwater pumping from the RRCA groundwater model
Reductions in runoff	RRCA Conservation Study, analysis of historic streamflow and baseflow information to estimate reductions in runoff
Drought	Comparison of 2000-2012 with longer-term averages to assess

the impact of more recent drought

Using data from preceding streamflow and baseflow plots COMPARISON BETWEEN 1950-1964 TIME PERIOD AND 1986-2000 TIME PERIOD

		Baseflow (50-		Baseflow (86-	Total	Baseflow	Runoff
(values in AF)	Total (50-64)	64)	Total (86-00)	00)	Difference	Difference	Difference
North Fork	53,287	46,139	34,730	31,616	18,557	14,523	4,034
Arikaree	17,729	6,636	5,766	3,275	11,963	3,361	8,602
Buffalo	5,775	5,336	3,271	2,793	2,504	2,543	(39)
Rock	10,456	9,922	7,370	6,665	3,086	3,257	(171)
South Fork	18,172	1,963	7,019	4,678	11,153	(2,715)	13,868
Frenchman (Imperial)	53,390	47,952	18,552	17,278	34,838	30,674	4,164
Frenchman (Enders- Palisade)	18,984	13,281	15,351	13,119	3,633	162	3,471
Frenchman (Palisade- Culbertson)	15,503	8,801	8,166	6,197	7,337	2,604	4,733
Driftwood	8,280	525	5,264	3,418	3,016	(2,893)	5,909
Red Willow Abv.	22,203	11,793	15,743	12,060	6,460	(267)	6,727
Red Willow Blw.	5,633	2,646	2,539	1,902	3,094	744	2,350
Medicine Abv.	51,686	35,332	37,350	32,198	14,336	3,134	11,202
Prairie Dog Abv.	10,725	1,562	7,043	2,632	3,682	(1,070)	4,752
MS Benkleman-Swanson	3,517	(8,516)	(3,135)	(9,047)	6,652	531	6,121
MS Swanson-McCook	8,833	(3,202)	12,750	7,563	(3,917)	(10,765)	6,848
MS McCook-Cambridge	7,032	(12,149)	10,680	(72)	(3,648)	(12,077)	8,429
MS Cambridge-Orleans	19,515	(8,131)	33,784	12,967	(14,269)	(21,098)	6,829
Total	330,720	159,890	222,243	149,242	108,477	10,648	97,829

Rainfall Comparison

Time Period	1918- 2013	1950- 1964	1986- 2000
Nebraska Average	22.12 inches	21.37 inches (44%)	23.35 inches (65%)
Basin Average	21.05 inches	20.36 inches (43%)	22.17 inches (62%)

- Earlier period had slightly below average rainfall
- Later period had significantly above average rainfall
- Runoff was reduced by 98,000 acre-feet despite the increased rainfall

Post-2000 impacts

- 2000-2012
 - Increase in depletions due to groundwater pumping
 - Are there additional reductions in runoff?
 - Precipitation
 - Average Nebraska = 22.78 inches (58%)
 - Average Basin-wide = 21.41 inches (53%)
 - No baseflow separations
 - Use streamflow data
 - Account for changes in GWCBCU
 - Add in SWCBCU so comparable with baseflow separations (which accounted for all major diversions)

Impacts above Swanson Reservoir

	1951-1964	1986-2000	2000-2012
Average Annual Flow (Straton Gage)	112,000 AF	51,000 AF	21,000 AF
Reduction from Early to Late Period			91,000 AF

Pumping Impacts	
Nebraska	20,000 AF
Kansas	6,000 AF
Colorado	25,000 AF
Total Pumping Impacts	51,000 AF
Reduction in Runoff	40,000 AF

Impacts on Red Willow

Reduction in Runoff	9,000 AF
Pumping Impacts	
Nebraska	8,000 AF
Total Impacts	17,000 AF

Impacts Above Harry Strunk Reservoir

Reduction in Runoff	11,000 AF
Pumping Impacts	
Nebraska *	20,000 AF
Imported Water (Nebraska)	10,000 AF
Total Impacts	21,000 AF

* Includes impacts below Harry Strunk

Impacts to Reservoirs Serving Frenchman Cambridge

Runoff Reduction	60,000 AF
Pumping Impacts	
Nebraska	48,000 AF
Kansas	6,000 AF
Colorado	25,000 AF
Imported Water (Nebraska)	10,000 AF
Total Impacts	129,000 AF

Imported water subtracted from Nebraska pumping impact for a net Nebraska impact of 38,000 acre-feet

Impacts to Reservoirs Serving Frenchman Cambridge

Nebraska (29%)
 Kansas (5%)
 Colorado (19%)
 Runoff (47%)

Above Harlan County Lake

• 2000-2012

Orleans, Stamford, and Woodruff gages	93,000 AF
NE Surface Water CBCU above Harlan County Lake	30,000 AF
Total Streamflow available above Harlan County Lake	123,000 AF
Total Reduction from 1986-2000 period (222,000 AF)	99,000 AF

Impacts Above Harlan County Lake

		2000-2012	Increase from 1986-2000
Pumping Imp	acts		
Nebras	ka	175,000 AF	23,000 AF
Kansas	5	16,000 AF	-2,000 AF
Colora	do	26,000 AF	4,000 AF
Imported Wat (Nebraska)	ter	17,000 AF	Unchanged
Reduction in	Runoff		74,000 AF

Accounts for 25,000 AF of the 99,000 AF reduction

Impacts Above Harlan County Lake

R	unoff Reduction	171,000 AF
Groundwater Depletions		
	Nebraska	176,000 AF
	• Kansas	16,000 AF
Colorado		26,000 AF
Imported Water (Nebraska)		17,000 AF
Total Impacts		372,000 AF

Imported water subtracted from Nebraska pumping impact for a net Nebraska impact of 159,000 acre-feet (inclusive of impacts above FCID)

Impacts above Harlan County Lake

Nebraska (43%)
Kansas (4%)
Colorado (7%)
Runoff (46%)

Changes from 1986-2000 to 2000-2012

- Inflows to Harlan County Lake were reduced by about 100,000 acre-feet from the earlier to the later period
- This is largely (i.e., 75%) attributable to additional reductions in runoff, which could be due to more normal precipitation in the later period and/or could also be due to increased conservation practices

Summary of Impacts

 Basin streamflows have been dramatically reduced since the 1950s and 1960s

	Above Reservoirs serving FCID	Above Harlan County Lake
Streamflow reductions	~ 110,000 – 140,000 AF	~ 375,000 AF
Nebraska groundwater pumping causes	~ 20 - 30%	~ 40%
Streamflow reductions as a	~75-90%	~100%
percentage of reservoir	(Swanson, Hugh	(Harlan, Swanson,
conservation (i.e. irrigation)	Butler, Harry	Enders, Hugh
storage capacity	Strunk)	Butler, Harry Strunk)

• These results are consistent across multiple studies

ESTIMATES OF FUTURE IMPACTS

Comparison between IMPs and "Kansas Remedy"

Future Impacts to Basin Reservoirs

- Assumptions:
 - Reductions in runoff will not increase from 2000-2012 levels
 - Pumping impacts by Kansas and Colorado will not increase from 2000-2012 levels
 - Two scenarios for Nebraska pumping and IWS Credit
 - Current IMPs with stream augmentation estimated at an average of 5,000 acre-feet per year for Rock Creek and 20,000 acre-feet per year for N-CORPE
 - The "Kansas Remedy" 90% reduction in pumping on 302,000 acres along river and tributaries
 - Used data provided by State of Kansas during litigation
 - Groundwater depletions are the average annual depletions from 2010-2069, which was modeled by repeating 1995-2009 four times

Future Impacts to Reservoirs Serving Frenchman Cambridge

		IMPs	KS Remedy
Runoff Reduct	tion	60,000 AF	60,000 AF
Pumping Impa	icts		
 Nebrask 	a *	58,000 AF	54,000 AF
Kansas		6,000 AF	6,000 AF
Colorad	0	25,000 AF	25,000 AF
Imported Wate	er (Nebraska)	8,000	12,000 AF
Augmentation	Water Supply	25,000	0 AF
Total Impacts		116,000 AF	133,000 AF

Imported water and augmentation water supply subtracted from Nebraska pumping impact for a net Nebraska impact of 25,000 acre-feet under the IMPs and a net Nebraska impact of 42,000 acre-feet under the Kansas Remedy

* Includes impacts below Harry Strunk and Hugh Butler

Result of Kansas Remedy vs. the IMPs

- Total average reductions in streamflow (from 50-60's baseline) still ~375,000 acre-feet (excluding additional drought impacts) under either plan
- Under the Kansas Remedy groundwater use would be limited to approximately 1 inch in the 5mile stream corridor
- Users with both surface and groundwater would have significantly less water under the Kansas Remedy
- Users with only surface water would not have more water under the KS Remedy as compared to the IMPs

Future of surface water?

- If groundwater pumping had never been developed in Nebraska, average streamflows would still be ~200,000-225,000 acre-feet less today than when the USBR projects were built.
- Recent drought has reduced streamflow by an additional ~100,000 acre-feet for a total impact to the USBR reservoirs not attributable to Nebraska groundwater pumping of ~300,000-325,000 acrefeet.
- This equates to approximately 85% of the conservation (i.e., irrigation) storage allocation in the USBR reservoirs in Nebraska.

Future of surface water?

- Nebraska is offsetting a significant proportion of the impacts due to Nebraska groundwater pumping through stream augmentation in dry years for Compact compliance purposes
- Additional offsets through dramatic cuts in groundwater pumping, such as those proposed by Kansas, would only provide a minimal increase (~1 inch on all project acres) in surface water deliveries while essentially eliminating supplemental groundwater sources
- Augmentation projects ensure that supplemental groundwater is available to those surface water users with a well

Future of surface water?

- Traditional model of operating solely to provide irrigation water may not be feasible
- Basin reservoirs may be able to sustain deliveries to a portion of the project acres if reductions in runoff and depletions caused by Kansas and Colorado do not increase significantly
- Cooperation through conjunctive management could open up new revenue sources for surface water projects which could provide for long-term viability
- Cooperation between DNR, USBR, NRDs, and IDs is necessary

The DNR and the Platte Basin NRDs developed the science and the relationships that have allowed the study and pursuit of many conjunctive management opportunities, which have provided great benefits for the irrigation districts involved

CONJUNCTIVE MANAGEMENT ON THE PLATTE RIVER

2011 Demonstration Project

• For groundwater recharge and flood reduction

Twin Platte NRD

- Partners
 - 23 Canals
 - DNR
 - South Platte NRD
- Results
 - Diversion Total 142,000 AF
 - Seepage Total 64,000 AF
 - 2011-2019 Accretion Total 15,000 AF

Average annual accretion ~1,500 AF/yr

- Tri-Basin NRD Central Platte NRD
 - North Platte NRD

2013 Flood Flow Project

 Mitigate impact of Colorado flood flows while also recharging groundwater
 – DNR, NRDs, & irrigation districts

South Platte River Bridge, Buffalo Bill Road, North Platte, NE Friday, September 20,2013 at 8:30 a.m. South Platte River Bridge, Buffalo Bill Road, North Platte, NE Saturday, September 21,2013 at 7:00 p.m.

Cozad Canal & Thirty-Mile Canal

- Cozad Canal (2014-2019)
- Thirty-Mile Canal (2014-2019)

~8,000 AF/yr ~8,000 AF/yr

Average annual accretion

Summary

- Current average streamflow supplies have been significantly reduced from historic levels
- The causes are groundwater pumping in the three states and reduced runoff; these are exacerbated by drought
- Cooperation/conjunctive management are better alternatives for long-term viability of the irrigation districts than significant proposed pumping reductions (KS remedy)
- Understanding how the water supply is changing is important for effective water planning

Summary

- These values were derived from a general review of readily available data. While it provides a useful overview of hydrologic changes in the Basin, the conclusions should be considered approximate and general in nature.
- The Department will be working to expand this work into many other basins of the state over the next couple of years

Jesse Bradley, P.G. Natural Resources Program Director Nebraska Department of Natural Resources